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Thermal Diffusivity in Supercritical Fluids
Measured by Thermal Lensing
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Thermal diffusivities of supercritical CO, and C,H, were determined over a
wide density range with a photothermal technique. The thermal lens, formed by
the degradation of the absorbed light energy as heat by the sample, allows the
employment of a nonequilibrium method in the critical region. Controlling the
refractive-index gradient, ie., a density gradient, perturbations can be main-
tained at levels where convection is negligible. An easy-to-operate setup allowed
us to measure thermal diffusivities in the density ranges 5 to 20 mol - dm =3 for
CO, at 308 and 313K and 2 to 12mol-dm~3 for C,H, at 308 K with a
standard precision of 15%.
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1. INTRODUCTION

Supercritical fluids have recently attracted attention because of their use as
environmentally benign solvents in extraction and separation processes and
for carrying out chemical reactions [1]. Therefore, their physicochemical
properties have been a subject of intensive study [ 2]. In the realm of super-
critical fluid properties, the determination of transport properties is a dif-
ficult task because of the inherent enhanced sensitivity of the medium, due
to the divergence of the susceptibilities at the critical point, coupled with
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the perturbations required to create the gradient which produces the trans-
port. Classical nonequilibrium methods for the determination of thermal
diffusivities measure the response of a system to an imposed macroscopic
gradient caused by local heating. The response can be measured either
under steady-state conditions (by measuring the temperature gradient,
related to the thermal conductivity) or by following the time evolution of
the temperature of the heated fluid or the propagation of the temperature
front in the fluid [3]. As the critical point is approached, temperature
gradients have to be limited drastically to avoid the contribution of con-
vection, induced by concomitant density gradients, to the mechanism of
thermal relaxation. While classical methods become inadequate in the near-
critical region, spectroscopic techniques, such as photon correlation spec-
troscopy, allow the determination of the diffusivity from the transport
mechanisms on a microscopic scale [4]. However, the decreasing capacity
of the fluid to scatter incident light forces an increase in the duration of the
measurements [ 5].

The goal of this work was the determination of the thermal diffusivity
of a supercritical fluid over a wide density range, including the near-critical
region, with the same technique. For this purpose, the study of supercritical
carbon dioxide and ethane by a photothermal method was undertaken.
These fluids were chosen because of their convenient critical parameters
and the availability of thermal diffusivity data over a wide range of den-
sities. The method allows thermal diffusivities to be measured with a
10-20% precision over a very broad density range of the fluid, from the
gas-like to the liquid-like domains, with an easy-to-operate and simple
setup.

Photothermal methods based on laser excitation are ultrasensitive
methods enjoying the advantages of small perturbations and are independent
from light scattering since they measure only the heat originated by light
absorption [6, 7]. The method presented here, the thermal lens technique,
is a classical nonequilibrium method in which a macroscopic thermal
gradient is created; it has the advantage that the induced temperature
profile is detected through the corresponding change in the refractive index,
i.e., the density change, allowing the applied perturbation to be very small
(4T of the order of 3 to 10 mK). The method also takes advantage of the
enhanced susceptibility: the amplitude of the measured signal scales with
(0n/0T), [k, n representing the refractive index and k the thermal conduc-
tivity, diverging at the critical point of a pure fluid. An enhancement of the
thermal response of two orders of magnitude was observed by Leach and
Harris [8] in supercritical CO, at 307 K and 7.84 MPa. A different and
more sophisticated photothermal method, laser-induced thermal grating,
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was recently employed to measure thermal diffusivities and diffusion coef-
ficients in supercritical CHF; [9].

2. THE THERMAL LENS TECHNIQUE

2.1. Description

The thermal lens effect arises when electromagnetic radiation from a
focused laser beam is absorbed by an element of volume of a fluid sample.
The processes degrading the absorbed energy as heat cause a local increase
in the temperature of the medium. If the fluid by itself does not have a
suitable absorbance at the laser wavelength, an absorbing probe must be
added. In this way a temperature gradient is built up, not only between the
irradiated and the nonirradiated regions of the fluid, but also within the
irradiated portion itself as a result of the nonuniform spatial distribution
of light energy density [6]. In one version of the many photothermal
experiments, the sample is irradiated by a focused continuous-wave (cw)
laser, normally used in a pure TEM, mode (Gaussian power distribution
along the cross section of the beam). The temperature gradient causes a
refractive-index change in the fluid, which generates a divergent lens in the
irradiated region, thus defocusing the excitation beam. As a consequence
of heat diffusion, the heat gradient, which was initially restricted to the
irradiated volume, spreads out to the nonirradiated region, changing the
focal length of the thermal lens. This change is monitored by measuring
the intensity at a small area in the center of the laser beam. The character-
istic time for the formation of the thermal lens depends only on the thermal
diffusivity of the medium and on the size of the irradiation beam.

The thermal lens technique has been employed basically as an analytical
tool to measure the absorbance of low-absorbing transparent liquids [10].
The time evolution of the thermal lens was used to determine thermal diffu-
sion in gases and liquids [11]. There are different versions of the thermal
lens experiment; in the single-beam technique employed in this work, the
same laser beam is used to induce the refractive-index gradient and to sense
the evolution of the formed lens [12].

2.2. Thermal Lens Equations

To describe the time evolution of the formed thermal lens it is assumed
that the light power absorbed, P,,,, is completely and very rapidly con-
verted into heat compared to the characteristic time of the thermal diffu-
sion process. Thus, heat is delivered to the irradiated volume element at a
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rate Py, = P,... An absorbing species that fulfills this requirement is called
a calorimetric reference [7]. Due to the laser beam spatial distribution of
power, a radial temperature gradient is generated. Considering that the
illuminated volume has cylindrical symmetry, thermal diffusion will occur
only along the radial coordinate r.

The solution of the diffraction equations that describes the effect of the
refractive-index gradient on the emerging beam requires some approxima-
tions. Two models have been used for this purpose. The “parabolic lens
model” [ 13] approximates the refractive-index distribution as parabolic in
the radial coordinate r, to calculate the radius of curvature of the induced
lens. The other model, the “aberrant lens model” [ 14], takes into account
the aberrant nature of the formed lens. This is performed by computing the
time-dependent focal length of the lens as the superposition of light beams
that travel through different optical paths at different radial distance from
the light beam center. The temperature gradient is used to calculate the
refractive-index variation that changes the optical path. Both models
describe the temporal dependence of the beam light intensity at its center,
I(t), for a cw laser excitation with TEMg,. This intensity, which depends
also on Z, the position of the irradiated sample volume relative to the
beam focus along the beam direction (see Fig. 1), can be expressed in terms
of two parameters: the amplitude ¢ and the characteristic time z..

I(t)=10f(Za L, tcaa) (1)

where I is the light intensity at ¢ =0. The parameters in Eq. (1) are related
to physical properties of the system, namely,

Py (—0n/oT),

0= T (2)
and
2
w
=D (3)

where A denotes the laser wavelength, @ the Gaussian width of the beam
at the sample’s position, and D the thermal diffusivity of the sample. The
incident laser power P; and the optical absorbance 4 are related to P, by

Py =P=P(1-107%)
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0o PC

Fig. 1. Schematic representation of the thermal lens setup. The laser is a
632.8-nm He-Ne. L, 150-mm biconvex lens; FP, focal plane of the lens from
which the distance Z is measured; C, high-pressure cell; P, pinhole; PD, Si
photodiode; Sh, shutter; PG, pulse generator; O, digital oscilloscope; PC,
personal computer; r, radial distance across the beam.

which may be approximated to P, =~ 2.303P, 4 when A4 is small. The func-
tion f(Z, ¢, ., 8) is model dependent. In the parabolic lens model [13],

1(:)=10[1~0<%>ﬁ] (4)

while for the aberration lens model [ 14],

_ _ 2y
’(”""[1 T zc/zt] ®)
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where

Z —
nw3/A

7= (6)

NIN

and w, is the Gaussian width of the beam at the focal point. Z_, as defined
by Eq. (6), is called the confocal length.

In both Eq. (4) and Eq. (5) the assumption is made that § is small,
neglecting terms higher than the first power in 6. In Eq. (5) the additional
assumption is made that tan~'(x) &~ x to obtain the factor multiplying 6 in
the large bracket. It has been shown [ 15] that, while the time dependence
of the lens formation can be represented by either model, the parameters
resulting from the fit to the parabolic model do not correspond to the
values expected from Egs. (2) and (3), according to independent measure-
ments of the solvent thermophysical properties. The parameters obtained
from the fit to the “aberrant lens,” on the other hand, are in agreement
with literature data only when the value of 4 is small.

Equations (4) and (5) can be expressed in a common form:

1
I(z)=10[1—@m] (7)

However, the parameters © and 1, are specific for each model.
For the parabolic lens model,

0 =0(2y)/(1+7?) (8a)
T.=1, (8b)

and for the aberration lens model,

0 =0(2y)/(3+%*) (9a)
_, 97
R (9b)

For the above-mentioned reasons, Eqs. (9a) and (9b) were used to inter-
pret the parameters obtained from the fit of the time-dependent thermal
lens signal to Eq. (7).

Combining Egs. (7) and (9b) with Eq. (3), we can obtain values of D
from the temporal evolution of the thermal lens formed at a distance Z
from the focal plane, provided that the value of w, or of w,, is known (see
below).
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2.3. Application to the Supercritical Regime

The supercritical domain is characterized by values of the isobaric
thermal coefficient p ~'(9p/dT), that increase strongly as the critical point
is approached. Consequently, temperature gradients induce increasingly
larger density effects, leading to convection. To avoid it, the temperature
perturbation has to be reduced drastically, also decreasing the monitoring
signal of classical methods. In contrast to this, in the thermal lens techni-
que the evolution of the perturbation is measured by monitoring the refrac-
tive index, which is always proportional to the fluid density.

The temperature gradient induced by the absorption of light can be
easily estimated for the steady-state conditions: the input power, P,
equals the power flow out of the irradiated volume. From the heat conduc-
tion law, the temperature gradient can be calculated from

or Py AT
T or k2nwl r (10)

where 4T=T,.— T(r), T, and T(r) are the temperatures at the beam
center (r=0) and at a distance r, respectively, and / denotes the optical
length. If we assume that the gradient occurs basically in the illuminated
volume, r ~ w, then

P
AT ~—2
k2nl

(11)

Equations (2) and (11) lead to

on 64
—ﬁAT—m (12)

where 1/(2nl) is a constant of the setup. The density effect due to the tem-
perature gradient is

op _Opon
A”_aT"T_an_aT"T (13)
which, with Eq. (12), gives
dp 62
dp= L2 (14)

" on 2nl
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Equation (14) relates the induced density gradient Ap to the amplitude of
the optical signal 8. Since A/(2zl) is constant and (3p/0n), is a well-behaved
function even in the critical region, Eq. (14) implies that density gradients
are always smooth functions of the amplitude 6. Therefore, in the thermal
lens technique, convection can be controlled through the value of 8, which
depends on P, [cf. Eq. (2)], without loss of sensitivity. In the critical
region, where density effects are enhanced, constancy in # establishes an
experimental criterion to maintain a near-constant convection effect. This
constitutes the main advantage of the thermal lens method for the study of
thermal diffusivities in the critical region.

3. EXPERIMENTAL

The cw setup, similar to the one described in the literature [12, 16],
is depicted schematically in Fig. 1. A 2-mW He-Ne laser (Melles Griot)
operating at 632.8 nm was employed. The beam was chopped by an elec-
tronic shutter (Sh; Melles Griot) and focused in the sample by a biconvex
150-mm-focal length lens (L). The light was detected by a Si diode (PD)
positioned at the center of the beam. To sample a small fraction of the
beam, the detector had a small aperture (P; a pinhole) and was located far
from the sample {(about 1.5m). Neutral density filters were used when
necessary to attenuate the laser light intensity. In this way, the value of @
was always kept below 0.1.

The sample was contained in a 7-mm-optical path high-pressure cell
(C) having two sapphire windows. The cell was surrounded by a water-
thermostated brass jacket. The temperature was controlled by a Haake unit
to within 0.05 K and was measured by a ceramic thermistor calibrated
against a standardized Beckmann thermometer (precision, 0.005 K), to
within 0.05 K. The ancillary equipment included a high-pressure hand-
operated pump and a pressure transducer, calibrated against a deadweight
gauge (Ruska; precision, 0.01%). The temperature and pressure calibra-
tions were verified in the sample cell by measuring the vapor pressure of
ethane as a function of temperature in the 300-305 K range. Agreement
with literature values of the pressure was obtained within 1%. Published
equations of state for carbon dioxide [17] and ethane [ 18] were used to
obtain the molar density of the fluids from the experimental pressures and
temperatures.

Azulene (Aldrich) was the absorbing dye. To ensure the validity of the
thermal lens equations and to avoid solute effects on the measured proper-
ties of the supercritical fluids, the azulene concentration was always kept
below 10 ~°M. Under these conditions, the effect of the dye on the fluid
density was kept two orders of magnitude smaller than the uncertainty in
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calculating the density with an equation of state through temperature and
pressure measurements. Azulene was introduced into the cell by injecting
1 ul of a concentrated toluene solution by means of a microliter syringe.
The solvent was allowed to evaporate before sealing the cell. Finally, the
cell was repeatedly flushed with the supercritical fluid. Carbon dioxide
and ethane were both AGA, 99.99%. Toluene was analytical grade, freshly
distilled.

In a typical experiment the sample was irradiated by opening the shut-
ter, which occurred instantaneously in the time scale of the experiment.
Due to the formation of the divergent lens, the light intensity at the center
of the beam decreased with time, approaching a steady-state value. The
diode current was amplified and recorded by a digital oscilloscope. After an
adequate time (typically 5 7.) the shutter was closed. After an interval
longer than the illumination period (typically twice the irradiation period),
the experiment was repeated, and the traces were averaged until the signal-
to-noise ratio was better than 100. The dark period was adjusted to assure
no remaining effect of the previous irradiation.

To determine w, the laser-intensity distribution across the beam was
measured in different ways, depending on the beam size, i.c., on the dis-
tance to the beam focus. For large beam diameters, a ca. 0.l-mm pin-
hole was used; it was displaced perpendicular to the beam propagation
direction, by means of a 10-ym-minimum division micrometric screw. The
measured diode current as a function of the position was fitted to a
Gaussian expression. For beam sizes comparable to the pinhole diameter,
a vertical razor blade was placed perpendicular to the beam and was
horizontally displaced by the same micrometric screw. In this case, the
diode current was fitted to the integral of the Gaussian function.

4. RESULTS

4.1. Determination of o,

To calculate D from ¢, the value of w at the cell position must be
known [ Eq. (3)]. To measure this quantity and, simultaneously, obtain the
fundamental parameter w, for the propagation of the Gaussian beam, the
beam intensity profile at different positions was measured. In this way
the quality of the laser mode could be tested by fitting the intensity distri-
bution to a Gaussian function

K(d) = I'ay exp( —2(d — d,)*/?) (15)
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Fig. 2. (a) Photon flux distribution, I(r), across the He—Ne laser beam at two positions, Z,
measured from the lens focus. Circles are experimental points and curves are the fit to a
Gaussian function [Eq. (10)]. (b) Integrated photon flux distribution at short distances from
the focus. The curve is the fit of the experimental points to an integrated Gaussian function.
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0 50 100 150 200 250
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Fig. 3. Plot according to Eq. (11) (see text). o at each posi-
tion was obtained from fits similar to those in Fig. 2. The inset
shows the detail of points measured near the focal point. From
this plot, w2=(7.48+0.04) 10~°cm? is obtained from the
slope.
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for positions far from the beam focus, or to its integral, for the small beam
widths determined near the focus of the laser. In Eq. (15), r is the radial
distance across the beam. Figures 2a and b show the good quality of the
TEM,, laser used. The value of w, was determined using the Gaussian
beam propagation equation:

0? =wi{1 +[Z}/(nw3)]*} = wi(1 +y?) (16)

Figure 3 shows a plot of w? vs. Z2, obtained with the position of the focus
calculated from the focal length of the lens as provided by the manufac-
turer. The value of w, can be obtained from the slope and the intercept of
the graph in Fig. 3. The values obtained were w3 =(7.48 £0.04) 10> cm?
and w?=(8.04 +0.26) 10> cm?, respectively. The value of the slope has a
lower uncertainty and was therefore used for further calculations.

The validity and consistency of Egs. (9a) and (9b) were also tested in
our setup. For that purpose, the thermal lens signal for azulene in toluene
at room temperature and 1 bar was recorded at different positions Z of the

.05 I

-05

-10 0 10 20
Z,cm
Fig. 4. Thermal lens signal amplitude, &, obtained from the
fit to Eq. (7), as a function of cell position, Z, measured from
the lens focus. Results from azulene in toluene at room tem-

perature and 1 bar. Points are experimental values. The line is
the best fit to Eq. (9a).
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cell. The time-dependent intensity was fitted to Eq. (7) to obtain @ and 7,
as a function of Z.

To obtain the full dependence of ., on Z, Egs. (16) and (3) have to
be combined with Eq. (9b) to yield

2 1 2 2
rc=&( +y)(92+y) (17)
4D  (3+y?)
The values of ® and 7, obtained in this way are represented as a function
of Z in Figs. 4 and 5, together with their fits to Eqs. (9a) and (17), respec-
tively; the results shown are very satisfactory.

4.2. Thermal Diffusivities of CO, and C,H

Thermal diffusivities of carbon dioxide were measured at 308 and
313 K in the fluid density range 3 to 20 mol - dm —3. For ethane, data were
taken at 308 K between 2 and 12 mol - dm—3. Temperatures were chosen so

400 T T T T T
300 .
£
200 i
4
100 | .
0 1 1 1
-10 0 10 20
Z,cm

Fig. 5. Plot of 7., obtained from the fit to Eq. (7), as a func-
tion of cell position, Z, for azulene in toluene at room tem-
perature and 1 bar. Points are experimental values. The line is
the best fit to Eq. (12), with w? obtained from Fig. 3.
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that literature data exist for comparison [19,20]. The evolution of the
light intensity at the laser beam center was recorded in all cases with the
cell positioned at Z=3.4cm.

Figure 6 shows a signal decay in C,H¢ and the corresponding
residuals to the fit of the data to Eq. (7). The values of ® and 7, increase
by almost one order of magnitude from the gas-like region to densities near
the critical density.

Isotherms of D, as a function of density for CO, and C,H,, are shown
in Figs. 7 and 8, respectively. The values for ethane are on average lower
than the literature values by 20% [19]. The deviation increases at high
densities. For CO, the values of D measured in this work are always higher
than the literature values [20]. The deviation is typically 20 %, with a dis-
persion of 15%, with no indication of worsening the results around the
critical density. There is no systematic deviation in the temperature or
pressure measurements, i.e., in density calculation, that can account for the
discrepancy.

.002

0.000

Residuals

-.002

315

310

3056

Signal , Vv

.300

.295

0.0

time , s

Fig. 6. Time evolution of the light intensity at the laser beam
center. The signal was measured in ethane at 307.8 K and density
2262 mol-dm 3 at Z=3.4 cm. In the upper graph the residuals
to the fit to Eq. (7) are shown. Fitting parameters are
1,=321.0+05mV, &=0.091 +0.001, and z,=42+1 ms.
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Fig. 7. Thermal diffusivity as a function of molar density for
supercritical CO, at (O) 308 K and (@) 313 K. Points are experi-
mental results. The curves are smooth fits to literature values [20].
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10F
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Fig. 8. Thermal diffusivity as a function of density for super-
critical ethane at 308 K. Points are experimental data. The
curve is a smooth fit to literature values [19].
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5. CONCLUSIONS

In spite of the 10-20% accuracy obtained in the present work, the
method deserves attention, not only because of its experimental simplicity
and affordable setup, but also because of its natural applicability to study
both fluid density regimes.

The critical factor in the accuracy attained in the determination of D
is the value of w at the position of the cell. An uncertainty in D of less than
10% will probably be difficult to achieve because of the quadratic
dependence of 7. on the cell position.

Another point worth considering is that, in our setup, a 7-mm cell was
used, with a confocal length of 3.7cm [see Eq. (6)]. The thin lens
approximation used in deriving both models might not be valid under
these conditions, causing systematic errors. The use of longer focal length
lenses should diminish this effect.
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